3.1.10 \(\int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx\) [10]

3.1.10.1 Optimal result
3.1.10.2 Mathematica [A] (verified)
3.1.10.3 Rubi [A] (verified)
3.1.10.4 Maple [A] (verified)
3.1.10.5 Fricas [A] (verification not implemented)
3.1.10.6 Sympy [F(-1)]
3.1.10.7 Maxima [A] (verification not implemented)
3.1.10.8 Giac [A] (verification not implemented)
3.1.10.9 Mupad [B] (verification not implemented)

3.1.10.1 Optimal result

Integrand size = 19, antiderivative size = 165 \[ \int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx=\frac {35 a x}{128}+\frac {a \text {arctanh}(\sin (c+d x))}{d}-\frac {a \sin (c+d x)}{d}-\frac {35 a \cos (c+d x) \sin (c+d x)}{128 d}-\frac {a \sin ^3(c+d x)}{3 d}-\frac {35 a \cos (c+d x) \sin ^3(c+d x)}{192 d}-\frac {a \sin ^5(c+d x)}{5 d}-\frac {7 a \cos (c+d x) \sin ^5(c+d x)}{48 d}-\frac {a \sin ^7(c+d x)}{7 d}-\frac {a \cos (c+d x) \sin ^7(c+d x)}{8 d} \]

output
35/128*a*x+a*arctanh(sin(d*x+c))/d-a*sin(d*x+c)/d-35/128*a*cos(d*x+c)*sin( 
d*x+c)/d-1/3*a*sin(d*x+c)^3/d-35/192*a*cos(d*x+c)*sin(d*x+c)^3/d-1/5*a*sin 
(d*x+c)^5/d-7/48*a*cos(d*x+c)*sin(d*x+c)^5/d-1/7*a*sin(d*x+c)^7/d-1/8*a*co 
s(d*x+c)*sin(d*x+c)^7/d
 
3.1.10.2 Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.64 \[ \int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx=\frac {a \left (107520 \text {arctanh}(\sin (c+d x))-107520 \sin (c+d x)-35840 \sin ^3(c+d x)-21504 \sin ^5(c+d x)-15360 \sin ^7(c+d x)+35 (840 c+840 d x-672 \sin (2 (c+d x))+168 \sin (4 (c+d x))-32 \sin (6 (c+d x))+3 \sin (8 (c+d x)))\right )}{107520 d} \]

input
Integrate[(a + a*Sec[c + d*x])*Sin[c + d*x]^8,x]
 
output
(a*(107520*ArcTanh[Sin[c + d*x]] - 107520*Sin[c + d*x] - 35840*Sin[c + d*x 
]^3 - 21504*Sin[c + d*x]^5 - 15360*Sin[c + d*x]^7 + 35*(840*c + 840*d*x - 
672*Sin[2*(c + d*x)] + 168*Sin[4*(c + d*x)] - 32*Sin[6*(c + d*x)] + 3*Sin[ 
8*(c + d*x)])))/(107520*d)
 
3.1.10.3 Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.99, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.947, Rules used = {3042, 4360, 25, 25, 3042, 3317, 3042, 3072, 254, 2009, 3115, 3042, 3115, 3042, 3115, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^8(c+d x) (a \sec (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos \left (c+d x-\frac {\pi }{2}\right )^8 \left (a-a \csc \left (c+d x-\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int -\left (\sin ^7(c+d x) \tan (c+d x) (a (-\cos (c+d x))-a)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\left ((\cos (c+d x) a+a) \sin ^7(c+d x) \tan (c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \sin ^7(c+d x) \tan (c+d x) (a \cos (c+d x)+a)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos \left (c+d x+\frac {\pi }{2}\right )^8 \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3317

\(\displaystyle a \int \sin ^8(c+d x)dx+a \int \sin ^7(c+d x) \tan (c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \sin (c+d x)^8dx+a \int \sin (c+d x)^7 \tan (c+d x)dx\)

\(\Big \downarrow \) 3072

\(\displaystyle \frac {a \int \frac {\sin ^8(c+d x)}{1-\sin ^2(c+d x)}d\sin (c+d x)}{d}+a \int \sin (c+d x)^8dx\)

\(\Big \downarrow \) 254

\(\displaystyle \frac {a \int \left (-\sin ^6(c+d x)-\sin ^4(c+d x)-\sin ^2(c+d x)+\frac {1}{1-\sin ^2(c+d x)}-1\right )d\sin (c+d x)}{d}+a \int \sin (c+d x)^8dx\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \sin (c+d x)^8dx+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {7}{8} \int \sin ^6(c+d x)dx-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {7}{8} \int \sin (c+d x)^6dx-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {7}{8} \left (\frac {5}{6} \int \sin ^4(c+d x)dx-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 d}\right )-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {7}{8} \left (\frac {5}{6} \int \sin (c+d x)^4dx-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 d}\right )-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {7}{8} \left (\frac {5}{6} \left (\frac {3}{4} \int \sin ^2(c+d x)dx-\frac {\sin ^3(c+d x) \cos (c+d x)}{4 d}\right )-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 d}\right )-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {7}{8} \left (\frac {5}{6} \left (\frac {3}{4} \int \sin (c+d x)^2dx-\frac {\sin ^3(c+d x) \cos (c+d x)}{4 d}\right )-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 d}\right )-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {7}{8} \left (\frac {5}{6} \left (\frac {3}{4} \left (\frac {\int 1dx}{2}-\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )-\frac {\sin ^3(c+d x) \cos (c+d x)}{4 d}\right )-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 d}\right )-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )+\frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {a \left (\text {arctanh}(\sin (c+d x))-\frac {1}{7} \sin ^7(c+d x)-\frac {1}{5} \sin ^5(c+d x)-\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}+a \left (\frac {7}{8} \left (\frac {5}{6} \left (\frac {3}{4} \left (\frac {x}{2}-\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )-\frac {\sin ^3(c+d x) \cos (c+d x)}{4 d}\right )-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 d}\right )-\frac {\sin ^7(c+d x) \cos (c+d x)}{8 d}\right )\)

input
Int[(a + a*Sec[c + d*x])*Sin[c + d*x]^8,x]
 
output
(a*(ArcTanh[Sin[c + d*x]] - Sin[c + d*x] - Sin[c + d*x]^3/3 - Sin[c + d*x] 
^5/5 - Sin[c + d*x]^7/7))/d + a*(-1/8*(Cos[c + d*x]*Sin[c + d*x]^7)/d + (7 
*(-1/6*(Cos[c + d*x]*Sin[c + d*x]^5)/d + (5*(-1/4*(Cos[c + d*x]*Sin[c + d* 
x]^3)/d + (3*(x/2 - (Cos[c + d*x]*Sin[c + d*x])/(2*d)))/4))/6))/8)
 

3.1.10.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 254
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[x^m, 
 a + b*x^2, x], x] /; FreeQ[{a, b}, x] && IGtQ[m, 3]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3072
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_ 
Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f   Subst[Int[ 
(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)], x 
]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.1.10.4 Maple [A] (verified)

Time = 1.86 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.70

method result size
derivativedivides \(\frac {a \left (-\frac {\sin \left (d x +c \right )^{7}}{7}-\frac {\sin \left (d x +c \right )^{5}}{5}-\frac {\sin \left (d x +c \right )^{3}}{3}-\sin \left (d x +c \right )+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a \left (-\frac {\left (\sin \left (d x +c \right )^{7}+\frac {7 \sin \left (d x +c \right )^{5}}{6}+\frac {35 \sin \left (d x +c \right )^{3}}{24}+\frac {35 \sin \left (d x +c \right )}{16}\right ) \cos \left (d x +c \right )}{8}+\frac {35 d x}{128}+\frac {35 c}{128}\right )}{d}\) \(116\)
default \(\frac {a \left (-\frac {\sin \left (d x +c \right )^{7}}{7}-\frac {\sin \left (d x +c \right )^{5}}{5}-\frac {\sin \left (d x +c \right )^{3}}{3}-\sin \left (d x +c \right )+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a \left (-\frac {\left (\sin \left (d x +c \right )^{7}+\frac {7 \sin \left (d x +c \right )^{5}}{6}+\frac {35 \sin \left (d x +c \right )^{3}}{24}+\frac {35 \sin \left (d x +c \right )}{16}\right ) \cos \left (d x +c \right )}{8}+\frac {35 d x}{128}+\frac {35 c}{128}\right )}{d}\) \(116\)
parts \(\frac {a \left (-\frac {\left (\sin \left (d x +c \right )^{7}+\frac {7 \sin \left (d x +c \right )^{5}}{6}+\frac {35 \sin \left (d x +c \right )^{3}}{24}+\frac {35 \sin \left (d x +c \right )}{16}\right ) \cos \left (d x +c \right )}{8}+\frac {35 d x}{128}+\frac {35 c}{128}\right )}{d}+\frac {a \left (-\frac {\sin \left (d x +c \right )^{7}}{7}-\frac {\sin \left (d x +c \right )^{5}}{5}-\frac {\sin \left (d x +c \right )^{3}}{3}-\sin \left (d x +c \right )+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )}{d}\) \(118\)
parallelrisch \(-\frac {a \left (-\frac {105 d x}{4}+\sin \left (6 d x +6 c \right )-\frac {3 \sin \left (7 d x +7 c \right )}{14}-\frac {3 \sin \left (8 d x +8 c \right )}{32}+96 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-96 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\frac {279 \sin \left (d x +c \right )}{2}+21 \sin \left (2 d x +2 c \right )-\frac {37 \sin \left (3 d x +3 c \right )}{2}-\frac {21 \sin \left (4 d x +4 c \right )}{4}+\frac {27 \sin \left (5 d x +5 c \right )}{10}\right )}{96 d}\) \(123\)
risch \(\frac {35 a x}{128}-\frac {93 i a \,{\mathrm e}^{-i \left (d x +c \right )}}{128 d}+\frac {93 i a \,{\mathrm e}^{i \left (d x +c \right )}}{128 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}+\frac {a \sin \left (8 d x +8 c \right )}{1024 d}+\frac {a \sin \left (7 d x +7 c \right )}{448 d}-\frac {a \sin \left (6 d x +6 c \right )}{96 d}-\frac {9 a \sin \left (5 d x +5 c \right )}{320 d}+\frac {7 a \sin \left (4 d x +4 c \right )}{128 d}+\frac {37 a \sin \left (3 d x +3 c \right )}{192 d}-\frac {7 a \sin \left (2 d x +2 c \right )}{32 d}\) \(180\)
norman \(\frac {\frac {35 a x}{128}-\frac {163 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{64 d}-\frac {1335 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{64 d}-\frac {24223 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{320 d}-\frac {359453 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{2240 d}-\frac {724649 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{6720 d}-\frac {45859 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{960 d}-\frac {2395 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{192 d}-\frac {93 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{15}}{64 d}+\frac {35 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{16}+\frac {245 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{32}+\frac {245 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{16}+\frac {1225 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{64}+\frac {245 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{16}+\frac {245 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{32}+\frac {35 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{16}+\frac {35 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{16}}{128}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{8}}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(312\)

input
int((a+a*sec(d*x+c))*sin(d*x+c)^8,x,method=_RETURNVERBOSE)
 
output
1/d*(a*(-1/7*sin(d*x+c)^7-1/5*sin(d*x+c)^5-1/3*sin(d*x+c)^3-sin(d*x+c)+ln( 
sec(d*x+c)+tan(d*x+c)))+a*(-1/8*(sin(d*x+c)^7+7/6*sin(d*x+c)^5+35/24*sin(d 
*x+c)^3+35/16*sin(d*x+c))*cos(d*x+c)+35/128*d*x+35/128*c))
 
3.1.10.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.75 \[ \int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx=\frac {3675 \, a d x + 6720 \, a \log \left (\sin \left (d x + c\right ) + 1\right ) - 6720 \, a \log \left (-\sin \left (d x + c\right ) + 1\right ) + {\left (1680 \, a \cos \left (d x + c\right )^{7} + 1920 \, a \cos \left (d x + c\right )^{6} - 7000 \, a \cos \left (d x + c\right )^{5} - 8448 \, a \cos \left (d x + c\right )^{4} + 11410 \, a \cos \left (d x + c\right )^{3} + 15616 \, a \cos \left (d x + c\right )^{2} - 9765 \, a \cos \left (d x + c\right ) - 22528 \, a\right )} \sin \left (d x + c\right )}{13440 \, d} \]

input
integrate((a+a*sec(d*x+c))*sin(d*x+c)^8,x, algorithm="fricas")
 
output
1/13440*(3675*a*d*x + 6720*a*log(sin(d*x + c) + 1) - 6720*a*log(-sin(d*x + 
 c) + 1) + (1680*a*cos(d*x + c)^7 + 1920*a*cos(d*x + c)^6 - 7000*a*cos(d*x 
 + c)^5 - 8448*a*cos(d*x + c)^4 + 11410*a*cos(d*x + c)^3 + 15616*a*cos(d*x 
 + c)^2 - 9765*a*cos(d*x + c) - 22528*a)*sin(d*x + c))/d
 
3.1.10.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))*sin(d*x+c)**8,x)
 
output
Timed out
 
3.1.10.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.77 \[ \int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx=-\frac {512 \, {\left (30 \, \sin \left (d x + c\right )^{7} + 42 \, \sin \left (d x + c\right )^{5} + 70 \, \sin \left (d x + c\right )^{3} - 105 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 105 \, \log \left (\sin \left (d x + c\right ) - 1\right ) + 210 \, \sin \left (d x + c\right )\right )} a - 35 \, {\left (128 \, \sin \left (2 \, d x + 2 \, c\right )^{3} + 840 \, d x + 840 \, c + 3 \, \sin \left (8 \, d x + 8 \, c\right ) + 168 \, \sin \left (4 \, d x + 4 \, c\right ) - 768 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a}{107520 \, d} \]

input
integrate((a+a*sec(d*x+c))*sin(d*x+c)^8,x, algorithm="maxima")
 
output
-1/107520*(512*(30*sin(d*x + c)^7 + 42*sin(d*x + c)^5 + 70*sin(d*x + c)^3 
- 105*log(sin(d*x + c) + 1) + 105*log(sin(d*x + c) - 1) + 210*sin(d*x + c) 
)*a - 35*(128*sin(2*d*x + 2*c)^3 + 840*d*x + 840*c + 3*sin(8*d*x + 8*c) + 
168*sin(4*d*x + 4*c) - 768*sin(2*d*x + 2*c))*a)/d
 
3.1.10.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.05 \[ \int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx=\frac {3675 \, {\left (d x + c\right )} a + 13440 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 13440 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (9765 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{15} + 83825 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{13} + 321013 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{11} + 724649 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 1078359 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 508683 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 140175 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 17115 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{8}}}{13440 \, d} \]

input
integrate((a+a*sec(d*x+c))*sin(d*x+c)^8,x, algorithm="giac")
 
output
1/13440*(3675*(d*x + c)*a + 13440*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 1 
3440*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(9765*a*tan(1/2*d*x + 1/2*c) 
^15 + 83825*a*tan(1/2*d*x + 1/2*c)^13 + 321013*a*tan(1/2*d*x + 1/2*c)^11 + 
 724649*a*tan(1/2*d*x + 1/2*c)^9 + 1078359*a*tan(1/2*d*x + 1/2*c)^7 + 5086 
83*a*tan(1/2*d*x + 1/2*c)^5 + 140175*a*tan(1/2*d*x + 1/2*c)^3 + 17115*a*ta 
n(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^8)/d
 
3.1.10.9 Mupad [B] (verification not implemented)

Time = 13.77 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.91 \[ \int (a+a \sec (c+d x)) \sin ^8(c+d x) \, dx=\frac {35\,a\,x}{128}+\frac {2\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}-\frac {7\,a\,\sin \left (2\,c+2\,d\,x\right )}{32\,d}+\frac {37\,a\,\sin \left (3\,c+3\,d\,x\right )}{192\,d}+\frac {7\,a\,\sin \left (4\,c+4\,d\,x\right )}{128\,d}-\frac {9\,a\,\sin \left (5\,c+5\,d\,x\right )}{320\,d}-\frac {a\,\sin \left (6\,c+6\,d\,x\right )}{96\,d}+\frac {a\,\sin \left (7\,c+7\,d\,x\right )}{448\,d}+\frac {a\,\sin \left (8\,c+8\,d\,x\right )}{1024\,d}-\frac {93\,a\,\sin \left (c+d\,x\right )}{64\,d} \]

input
int(sin(c + d*x)^8*(a + a/cos(c + d*x)),x)
 
output
(35*a*x)/128 + (2*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d - (7*a 
*sin(2*c + 2*d*x))/(32*d) + (37*a*sin(3*c + 3*d*x))/(192*d) + (7*a*sin(4*c 
 + 4*d*x))/(128*d) - (9*a*sin(5*c + 5*d*x))/(320*d) - (a*sin(6*c + 6*d*x)) 
/(96*d) + (a*sin(7*c + 7*d*x))/(448*d) + (a*sin(8*c + 8*d*x))/(1024*d) - ( 
93*a*sin(c + d*x))/(64*d)